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We are presently living in a time of unparalleled change, and concern for the environment has never 
been greater. Global warming and climate change, possible rising sea levels, deforestation, desertifica-
tion, and widespread soil erosion are just some of the issues of current concern. Although it is the role 
of human activity in such issues that is of most concern, this activity affects the operation of the natural 
processes that occur within the physical environment. Most of these processes and their effects are taught 
and researched within the academic discipline of physical geography. A knowledge and understanding of 
physical geography, and all it entails, is vitally important.

It is the aim of this Fundamentals of Physical Geography Series to provide, in five volumes, the fundamental 
nature of the physical processes that act on or just above the surface of the earth. The volumes in the series 
are Climatology, Geomorphology, Biogeography, Hydrology and Soils. The topics are treated in sufficient breadth 
and depth to provide the coverage expected in a Fundamentals series. Each volume leads into the topic 
by outlining the approach adopted. This is important because there may be several ways of approaching 
individual topics. Although each volume is complete in itself, there are many explicit and implicit refer-
ences to the topics covered in the other volumes. Thus, the five volumes together provide a comprehensive 
insight into the totality that is physical geography.

The flexibility provided by separate volumes has been designed to meet the demand created by the 
variety of courses currently operating in higher education institutions. The advent of modular courses 
has meant that physical geography is now rarely taught, in its entirety, in an ‘all-embracing’ course but 
is generally split into its main components. This is also the case with many Advanced-level syllabuses. 
Thus students and teachers are being frustrated increasingly by a lack of suitable books and are having 
to recommend texts of which only a small part might be relevant to their needs. Such texts also tend to 
lack the detail required. It is the aim of this series to provide individual volumes of sufficient breadth and 
depth to fulfil new demands. The volumes should also be of use to sixth form teachers where modular 
syllabuses are also becoming common.

Each volume has been written by higher education teachers with a wealth of experience in all aspects of 
the topics they cover and a proven ability in presenting information in a lively and interesting way. Each 
volume provides a comprehensive coverage of the subject matter using clear text divided into easily acces-
sible sections and subsections. Tables, figures and photographs are used where appropriate as well as boxed 
case studies and summary notes. References to important previous studies and results are included but are 
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used sparingly to avoid overloading the text. Suggestions for further reading are also provided. The main 
target readership is introductory level undergraduate students of physical geography or environmental 
science, but there will be much of interest to students from other disciplines and it is also hoped that sixth 
form teachers will be able to use the information that is provided in each volume.

John Gerrard



It is 17 years since the first edition of Fundamentals of Hydrology was published – time enough to reflect on 
what has changed in hydrology during this time. One very positive change is that hydrology is now much 
more integrated within environmental science. It is common to hear reference to catchment science or 
water management rather than straight hydrology which shows an interest in more than just the physics 
of water transfer; people are interested in how water affects their health, their livelihoods and the natural 
world around them. This textbook set out to bring together the discipline of hydrology with aspects of 
water quality, ecology and natural resource management so it is pleasing to see this type of integrated 
thinking reflected in scientific literature, university teaching and public debate. If Fundamentals of Hydrol-
ogy has helped in any small way to bring about that change then that is a very positive outcome.

A second area of significant change has been in instrumentation, particularly the rise of fast and small 
electronic circuitry. This means that we can measure environmental variables in a less intrusive, better 
and faster way; often continuously rather than at a single point in time. Two obvious examples of this 
are acoustic doppler streamflow measurement where we can measure river velocities throughout the total 
water column and optical water quality sensors where we can measure nitrate concentrations continuously 
in a river. These types of measurements improve our understanding of hydrological processes in both 
space and time but can also be important information for understanding ecological and land management 
processes, which in turn promotes the type of integrated science referred to above.

One of the challenges of improved measurement techniques is the quantity of data produced and how to make 
sense of it all. Fortunately, there has been a corresponding rise in computing power and ability to store these data 
‘mountains’. An exciting development for this is the rise of artificial intelligence and data mining techniques 
using fuzzy logic or similar. These types of techniques offer the possibility of making sense of and seeing pat-
terns within enormous data sets, something that was far beyond the capability of hydrologists 20 years ago.

This third edition of Fundamentals of Hydrology has been greatly enhanced by the addition of Nevil Quinn 
as a co-author: Nevil’s skills in flood hydrology, water management and up-to-date university teaching has 
brought a fresh perspective to the text. I am very grateful for his willingness to take on this task and the 
many hours spent revising and adding new text. I am grateful to the editors at Routledge, Egle Zigaite and 
Andrew Mould, who have waited patiently for this third edition to be finished. And finally, I am once again 
thankful to my wife Chris for putting up with disrupted evenings and weekends while I worked on the text.

Tim Davie,
Christchurch, New Zealand November 2018
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INTRODUCTION

Quite literally, hydrology is ‘the science or study of’ 
(‘logy’ from Latin logia) ‘water’ (‘hydro’ from Greek 
hudor). However, contemporary hydrology does not 
study all the properties of water. Modern hydrol-
ogy is concerned with the distribution of water 
on the surface of the earth; its movement over and 
beneath the surface, and through the atmosphere. 
This wide-ranging definition suggests that all 
water comes under the remit of a hydrologist, while 
in reality it is the study of fresh water that is of 
primary concern. The study of the saline water on 
earth is carried out in oceanography.

When studying the distribution and movement 
of water it is inevitable that the role of human inter-
action with it comes into play. Although human 
needs for water are not the only motivating force 
in a desire to understand hydrology, they are prob-
ably the strongest. This book attempts to integrate 
the physical processes of hydrology with an under-
standing of human interaction with fresh water. The 
human interaction can take the form of water quan-
tity problems (e.g. over-extraction of groundwater) 
or water quality issues (e.g. disposal of pollutants).

Water is among the most essential requisites that nature 
provides to sustain life for plants, animals and humans. 

The total quantity of fresh water on earth could satisfy 
all the needs of the human population if it were evenly 
distributed and accessible.

(Stumm 1986: 201)

Although written around 30 years ago, the views 
expressed by Stumm are still apt today. The real 
point of Stumm’s statement is that water on earth is 
not evenly distributed and is not evenly accessible. 
It is the purpose of hydrology as a pure science to 
explore these disparities and try to explain them. It 
is the aim of hydrology as an applied science to take 
the knowledge of why any disparities exist and try 
to lessen the impact of them. There is much more 
to hydrology than just supplying water for human 
needs (e.g. studying floods as natural hazards; the 
investigation of lakes and rivers for ecological 
habitats), but analysis of this quotation gives good 
grounds for looking at different approaches to the 
study of hydrology.

The two main pathways to the study of hydrol-
ogy come from engineering and geography, particu-
larly the earth science side of geography. The earth 
science approach comes from the study of landforms 
(geomorphology) and is rooted in a history of 
explaining the processes that lead to water mov-
ing around the earth and to try to understand spa-
tial links between the processes. The engineering 
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approach tends to be a little more practically based 
and looks towards finding solutions to problems 
posed by water moving (or not moving) around 
the earth. In reality there are huge areas of overlap 
between the two and it is often difficult to separate 
them, particularly when you enter into hydrologi-
cal research. At an undergraduate level, however, 
the difference manifests itself through earth science 
hydrology being more descriptive (understanding 
processes) and engineering hydrology being more 
numerate (quantifying flows). Within the broad 
discipline of hydrology there are also areas of spe-
cialisation. For example, some hydrologists focus 
on groundwater and this specialised area is known 
as geohydrology or hydrogeology. In recent decades 
another area of specialisation has emerged; that of 
ecohydrology or hydroecology. This is the study of 
hydrology in relation to the natural aquatic envi-
ronment (e.g. rivers and wetlands) and the impor-
tant interdependence of water and ecosystems.

The approach taken in this book is more 
towards the earth science side, a reflection of the 
authors’ training and interests, but it is inevita-
ble that there is considerable crossover. There are 
parts of the book that describe numerical tech-
niques of fundamental importance to any prac-
tising hydrologist from whatever background, 
and it is hoped that the book can be used by all 
undergraduate students of hydrology.

Throughout the book there are highlighted 
case studies to illustrate different points made in 
the text. The case studies are drawn from research 
projects or different hydrological events around the 
world and are aimed at reinforcing the text else-
where in the same chapter. Where appropriate, 
there are highlighted worked examples illustrating 
the use of a particular technique on a real data set.

IMPORTANCE OF WATER

Water is the most common substance on the surface 
of the earth, with the oceans covering over 70 per 
cent of the planet. Water is one of the few substances 
that can be found in all three states (i.e. gas, liquid 

and solid) within the earth’s climatic range. The 
very presence of water in all three forms makes it 
possible for the earth to have a climate that is habit-
able for life forms: water acts as a climate ameliorator 
through the energy absorbed and released during 
transformation between the different phases. In 
addition to lessening climatic extremes the trans-
formation of water between gas, liquid and solid 
phases is vital for the transfer of energy around the 
globe: moving energy from the equatorial regions 
towards the poles. The low viscosity of water makes 
it an extremely efficient transport agent, whether 
through international shipping or river and canal 
navigation. These characteristics can be described 
as the physical properties of water and they are critical 
for human survival on planet earth.

The chemical properties of water are equally impor-
tant for our everyday existence. Water is one of the 
best solvents naturally occurring on the planet. 
This makes water vital for cleanliness: we use it for 
washing but also for the disposal of pollutants. The 
solvent properties of water allow the uptake of vital 
nutrients from the soil and into plants; this then 
allows the transfer of the nutrients within a plant’s 
structure. The ability of water to dissolve gases such 
as oxygen allows life to be sustained within bodies 
of water such as rivers, lakes and oceans.

The capability of water to support life goes 
beyond bodies of water; the human body is com-
posed of around 60 per cent water. The majority of 
this water is within cells, but there is a significant 
proportion (around 34 per cent) that moves around 
the body carrying dissolved chemicals which are 
vital for sustaining our lives (Ross and Wilson 
1981). Our bodies can store up energy reserves that 
allow us to survive without food for weeks but not 
more than days without water.

There are many other ways that water affects 
our very being. In places such as Norway, parts of 
the USA and New Zealand, energy generation for 
domestic and industrial consumption is through 
hydro-electric schemes, harnessing the combina-
tion of water and gravity in a (by and large) sus-
tainable manner. Water plays a large part in the 
spiritual lives of millions of people. In Christianity, 
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baptism with water is a powerful symbol of cleans-
ing and God offers ‘streams of living water’ to those 
who believe (John 7:38). In Islam there is washing 
with water before entering a mosque for prayer. In 
Hinduism, bathing in the sacred Ganges provides a 
religious cleansing. Many other religions give water 
an important role in sacred texts and rituals.

Water is important because it underpins our very 
existence: it is part of our physical, material and 
spiritual lives. The study of water would therefore 
also seem to underpin our very existence. Before 
expanding further on the study of hydrology it is 
first necessary to step back and take a closer look at 
the properties of water briefly outlined above. Even 
though water is the most common substance found 
on the earth’s surface, it is also one of the strangest. 
Many of these strange properties help to contribute 
to its importance in sustaining life on earth.

Physical and chemical 
properties of water

A water molecule consists of two hydrogen atoms 
bonded to a single oxygen atom (Figure 1.1). The 
connection between the atoms is through covalent 
bonding: the sharing of an electron from each atom 
to give a stable pair. This is the strongest type of 
bonding within molecules and is the reason why 
water is such a robust compound (i.e. it does not 
break down into hydrogen and oxygen easily). The 
robustness of the water molecule means that it stays 
as a water molecule within our atmosphere because 
there is not enough energy available to break the 
covalent bonds and create separate oxygen and 
hydrogen molecules.

Figure 1.1 shows us that the hydrogen atoms are 
not arranged around the oxygen atom in a straight 
line. There is an angle of approximately 105° (i.e. a 
little larger than a right angle) between the hydro-
gen atoms. The hydrogen atoms have a positive 
charge, which means that they repulse each other, 
but at the same time there are two non-bonding 
electron pairs on the oxygen atom that also repulse 
the hydrogen atoms. This leads to the molecular 
structure shown in Figure 1.1. A water molecule 

can be described as bipolar, which means that there 
is a positive and negative side to the molecule. This 
polarity is an important property of water as it leads 
to the bonding between molecules of water: hydro-
gen bonding. The positive side of the molecule 
(i.e. the hydrogen side) is attracted to the negative 
side (i.e. the oxygen atom) of another molecule and 
a weak hydrogen bond is formed (Figure 1.2). The 
weakness of this bond means that it can be broken 

Figure 1.1 The atomic structure of a water molecule. 
The spare electron pairs on an oxygen atom are shown 
as small crosses.

Figure 1.2 The arrangement of water molecules with 
hydrogen bonds. The stronger covalent bonds between 
hydrogen and water atoms are shown as solid lines.

Source: Redrawn from McDonald and Kay (1988) and 
Russell (1976)
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with the application of some force and the water 
molecules separate, forming water in a gaseous state 
(water vapour). Although this sounds easy, it actu-
ally takes a lot of energy to break the hydrogen 
bonds between water molecules. This leads to a 
high specific heat capacity whereby a large amount 
of energy is absorbed by the water to cause a small 
rise in energy.

The lack of rigidity in the hydrogen bonds 
between liquid water molecules gives it two more 
important properties: a low viscosity and the ability 
to act as an effective solvent. Low viscosity comes 
from water molecules not being so tightly bound 
together that they cannot separate when a force is 
applied to them. This makes water an extremely 
efficient transport mechanism. When a ship applies 
force to the water molecules they move aside to 
let it pass! The ability to act as an efficient sol-
vent comes through water molecules disassociating 
from each other and being able to surround charged 
compounds contained within them. As described 
earlier, the ability of water to act as an efficient sol-
vent allows us to use it for washing and the disposal 
of pollutants, and also allows nutrients to pass from 
the soil to a plant.

In water’s solid state (i.e. ice) the hydrogen 
bonds become rigid and a three-dimensional 
crystalline structure forms. An unusual prop-
erty of water is that the solid form has a lower 
density than the liquid form, something that is 
rare in other compounds. This property has pro-
found implications for the world we live in as it 
means that ice floats on water. More importantly 
for aquatic life, it means that water freezes from 
the top down rather than the other way around. 
If water froze from the bottom up, then aquatic 
flora and fauna would be forced upwards as the 
water froze and eventually end up stranded on the 
surface of a pond, river or sea. As it is, the flora 
and fauna are able to survive underneath the ice in 
liquid water. The maximum density of water actu-
ally occurs at around 4 °C (see Figure 1.3) so that 
still bodies of water such as lakes and ponds will 
display thermal stratification, with water close to 
4 °C sinking to the bottom.

Water requires a large amount of energy to heat 
it up. This can be assessed through the specific 
heat capacity, which is the amount of energy 
required to raise the temperature of a substance 
by a single degree. Water has a high specific heat 
capacity relative to other substances (Table 1.1). It 
requires 4,200 joules of energy to raise the tempera-
ture of 1 kilogram of liquid water (approximately 
1 litre) by a single degree. In contrast dry soil has 
a specific heat capacity of around 1.1 kJ/kg/K (it 
varies according to mineral make up and organic 
content) and alcohol 0.7 kJ/kg/K. Heating causes 
the movement of water molecules and that move-
ment requires the breaking of the hydrogen bonds 
linking them. The large amount of energy required 
to break the hydrogen bonds in water gives it such 
a high specific heat capacity.

We can see evidence of water’s high specific heat 
capacity in bathing waters away from the trop-
ics. It is common for sea temperatures to be much 
lower than air temperatures in high summer since 
the water is absorbing all the solar radiation and 
heating up very slowly. In contrast the water tem-
perature also decreases slowly, leading to the sea 
often being warmer than the air during autumn 
and winter. As the water cools down it starts to 
release the energy that it absorbed as it heated up. 
Consequently for every drop in temperature of 1 °C 
a single kilogram of water releases 4.2 kJ of energy 

Figure 1.3 The density of water with temperature. The 
broken line shows the maximum density of water at 
3.98 °C.
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into the atmosphere. It is this that makes water a 
climate ameliorator. During the summer months a 
water body will absorb large amounts of energy as 
it slowly warms up; in an area without a water body, 
that energy would heat the earth much quicker (i.e. 
dry soil in Table 1.1) and consequently air tempera-
tures would be higher. In the winter the energy is 
slowly released from the water as it cools down and 
is available for heating the atmosphere nearby. This 
is why a maritime climate has cooler summers, but 
warmer winters, than a continental climate.

The energy required to break hydrogen bonds 
is also the mechanism by which large amounts of 
energy are transported away from the hot equa-
torial regions towards the cooler poles. As water 
evaporates, the hydrogen bonds between liquid 
molecules are broken. This requires a large amount 
of energy. The first law of thermodynamics states 
that energy cannot be destroyed, only transformed 
into another form. In this case the energy absorbed 
by the water particles while breaking the hydrogen 
bonds is transformed into latent heat that is then 
released as sensible heat as the water precipitates 
(i.e. returns to a liquid form). In the meantime the 
water has often moved considerable distances in 
weather systems, taking the latent energy with it. It 
is estimated that water movement accounts for 70 
per cent of lateral global energy transport through 
latent heat transfer (Mauser and Schädlich 1998), 
also known as advective energy.

Water acts as a climate ameliorator in one other 
way: water vapour is a powerful greenhouse gas. 
Radiation direct from the sun (short-wave radia-
tion) passes straight through the atmosphere and 

may be then absorbed by the earth’s surface. This 
energy is normally re-radiated back from the earth’s 
surface in a different form (long-wave radiation). 
The long-wave radiation is absorbed by the gaseous 
water molecules and consequently does not escape 
the atmosphere. This leads to the gradual warm-
ing of the earth–atmosphere system as there is an 
imbalance between the incoming and outgoing 
radiation. It is the presence of water vapour in our 
atmosphere (and other gases such as carbon diox-
ide and methane) that has allowed the planet to 
be warm enough to support all of the present life 
forms that exist.

Figure 1.4 shows the phase transitions of water 
and the name of the corresponding process. While 
some of these processes have already been men-
tioned, it is important to be familiar with all of 
them. One that is particularly relevant for the next 
chapter is desublimation or deposition. This is 
where ice forms directly from water vapour. It 
is also important to note that at normal atmo-
spheric pressure and at temperatures between 0 °C 
and 100 °C, liquid water is in a stable state, as is 
water vapour above temperatures of 100 °C, and 
ice below 0 °C. However water can also exist in 
metastable states, and importantly these often 
occur in the atmosphere. Between temperatures 
of 0 °C and as low as −40 °C, metastable water 
can exist in liquid form, known as supercooled 
water. Equally, metastable water vapour can exist 
alongside stable ice and metastable supercooled 
water. When supercooled liquid water comes into 
contact with ice, instantaneous freezing occurs. 
Note that some meteorologists use sublimation 
to mean both a phase transformation from solid to 
gas, and also the reverse process. To avoid confu-
sion we will use the equivalent terms deposition 
and desublimation to refer to the process of a gas 
becoming a solid without the intermediate liquid 
phase.

The catchment or river basin

In studying hydrology the most common spa-
tial unit of consideration is the catchment or 

Table 1.1 Specific heat capacity of various 
substances

Substance Specific heat capacity 
(kJ/kg/K)

Water 4.2
Dry soil 1.1
Ethanol (alcohol) 0.7
Iron 0.44
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river basin. This can be defined as the area of 
land from which water flows towards a river and 
then in that river to the sea. The terminology 
suggests that the area is analogous to a basin 
where all water moves towards a central point 
(i.e. the plug hole of a basin, or in this case, the 
river mouth). The common denominator of any 
point in a catchment is that wherever rain falls, 
it will end up in the same place: where the river 
meets the sea (unless lost through evaporation). 
A catchment may range in size from a matter of 
hectares to millions of square kilometres, and all 
catchments are, in reality, made up of a set of 
nested sub-catchments.

A river basin can be defined in terms of its 
topography through the assumption that all water 
falling on the surface flows downhill. In this way 

a catchment boundary (or divide) can be drawn 
(catchment delineation) (as in Figure 1.5) which 
defines the actual catchment area for a river basin. 
In some parts of the world a river basin is also 
referred to as a watershed – this word stems from 
the fact that at the catchment boundary water is 
either ‘shed’ into one basin or an adjacent basin. 
Strictly speaking therefore ‘watershed’ refers to 
the catchment boundary or divide. The assump-
tion that all water flows downhill to the river is 
not always correct, especially where the underlying 
geology of a catchment is complicated. It is pos-
sible for water to flow as groundwater into another 
catchment area, creating a problem for the defini-
tion of ‘catchment area’. This means that the surface 
water catchment and the groundwater catchment 
are not necessarily the same (Figure 1.6). These 
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Figure 1.4 Phase changes of water under normal atmospheric conditions and related 
terminology.

Source: Adapted from Kump et al. (2011)



Figure 1.5 Left: Map of the Motueka catchment/watershed, a 2,180 km2 catchment draining northward at the 
top of the South Island, New Zealand. Topography is indicated by shading. The Baton river sub-catchment is 
represented by the dotted outline. Right: A schematic view of a typical small sub-catchment.

Source: Digital elevation model based on USGS 2006 Shuttle Radar Topography Mission. Catchment schematic 
from Charlton (2008)

Figure 1.6 The difference between a surface water divide and a groundwater divide. Arrows 
represent the direction of surface and groundwater flow.

Groundwater catchment
divide

Surface water catchment
divide
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problems aside, the catchment does provide an 
important spatial unit for hydrologists to consider 
how water is moving about and is distributed at a 
certain time.

THE HYDROLOGICAL CYCLE

As a starting point for the study of hydrology 
it is useful to consider the hydrological cycle. 
This is a conceptual model of how water moves 
around between the earth and atmosphere in dif-
ferent states as a gas, liquid or solid. As with any 
conceptual model it contains many gross sim-
plifications; these are discussed in this section. 
There are different scales at which the hydro-
logical cycle can be viewed, but it is helpful to 
start at the large global scale and then move to 
the smaller hydrological unit of a river basin or 
catchment.

The global hydrological cycle

Table 1.2 sets out an estimate for the amount of 
water held on the earth at a single time. These 
figures are extremely hard to estimate accurately. 
Estimates cited in Gleick (1993) show a range 

in total from 1.36 to 1.45 thousand million (or 
US billion) cubic kilometres of water. The vast 
majority of this is contained in the oceans and 
seas. If you were to count groundwater less than 
1km in depth as ‘available’ and discount snow and 
ice, then the total percentage of water available 
for human consumption is around 0.27 per cent. 
Although this sounds very little it works out at 
about 146 million litres of water per person per 
day (assuming a world population of 7 billion); 
hence the ease with which Stumm (1986) was able 
to state that there is enough to satisfy all human 
needs.

Figure 1.7 shows the movement of water 
around the earth–atmosphere system and is a 
representation of the global hydrological cycle. 
The cycle consists of evaporation of liquid water 
into water vapour that is moved around the atmo-
sphere. At some stage the water vapour condenses 
into a liquid (or solid) again and falls to the sur-
face as precipitation. The oceans evaporate more 
water than they receive as precipitation, while 
the opposite is true over the continents. The dif-
ference between precipitation and evaporation in 
the terrestrial zone is runoff, water moving over 
or under the surface towards the oceans, which 
completes the hydrological cycle. As can be seen 

Table 1.2 Estimated volumes of water held at the earth’s surface

Volume (×103 km3) Percentage of total

Oceans and seas 1,338,000 96.54
Ice caps and glaciers 24,064 1.74
Groundwater 23,400 1.69
Permafrost 300 0.022
Lakes 176 0.013
Soil 16.5 0.001
Atmosphere 12.9 0.0009
Marsh/wetlands 11.5 0.0008
Rivers 2.12 0.00015
Biota 1.12 0.00008
Total 1,385,984 100.00

Source: Data from Shiklomanov and Sokolov (1983)



HYDROLOGY AS A SCIENCE 9

total precipitation is partitioned towards differ-
ent hydrological processes in differing amounts 
depending on climate. In temperate climates 
(i.e. non-tropical or polar) around one third of 
precipitation becomes evaporation, one third 
surface runoff and the final third as groundwa-
ter recharge. In arid and semi-arid regions the 
proportion of evaporation is much greater, at the 
expense of groundwater recharge.

With the advent of satellite monitoring of the 
earth’s surface in the past 40 years it is now possible 
to gather information on the global distribution 

in Figure 1.7, where the width of the arrows is 
proportional to the volume, the vast majority 
of evaporation and precipitation occurs over the 
oceans. Ironically this means that the terrestrial 
zone, which is of greatest concern to hydrologists, 
is actually rather insignificant in global terms.

The processes shown in Figure 1.7 (evapora-
tion, precipitation and runoff) are the funda-
mental processes of concern in hydrology. The 
figures given in the diagram are global totals, 
but they vary enormously around the globe. This 
is illustrated in Figure 1.8 which shows how 

Figure 1.7 The global hydrological cycle. The numbers represent estimates on 
the total amount of water (km3) in each process per annum. The thickness of the 
arrows denotes the proportional volume.

Source: Figure drawn by Philippe Rekacewicz (GRID-Arendal) (based on data from 
UNEP (2008))




